Sigmapi Design Drawing Engine

Sinisa Petri¢

February 3, 2017

Contents

. ooncept| . .. oL L

......................................

3.3 Rendering types|. e
[3.4 Prepare everything for drawing|

[4 Colors, textures and color scheme|

M5 Colorscheme

9.2 Other shapes|
5.3 Drawing shapes programmatically|.

6 Advanced drawing|

10
10
11
12
13

15
15
15
16
16
17
18

20
20
21
23

Contents

[7 spEngine structures and constants| 30
(7.1 Tpx RenderData]. 30
[7.1.1 Tpx RenderParams| 30

[7.1.2 Tpx DrawParams| 31

[7.1.3 Tpx ShadowParams| 31

(7.2 Tpx BrushCommonParams| 31
[7.2.0.1 Brush tip parameters| 32

[7.2.1 Brush filter parameters|. L. 32

[7.2.2 Brush bumping parameters|, 33

[7.2.3 DBrush envelope parameters|, 33

[7.2.4 Brush tip jittering] oL 33

[7.2.5 Polygon filling parameters| 34

[7.2.6 Strokes scratchingl L. 34

[7.3 Brush specific parameters| L. 34

[8 Acknowledgments| 35

1 Introduction

1.1 Installation

Sigmapi Design Drawing Engine (spEngine) is simple DLL library written in Embar-
cadero C++ and is intended for Embarcadero C++/Delphi developers. It can work with
any kind of image container with known stride (alignment). Often, Delphi programmers
use TBitmap object as image container, however, in this manual we will use TIEBitamp
container from ImageEn VCL (www.imageen.com). Installation is straight forward: all
you need is to include following files into your main program:

o C++:

— spEngine.lib: static library that must be linked with your code. 64-bit static
library has extension “a” (spEngine.a).

— spGlobals.h: global spEngine constants (included in spEngineDILh).
— spEngineDILh: structures and API definitions (header must be included in
your main program using #include).
e Delphi::
— spGlobals.pas: global spEngine constants (included in spEngineDll.pas).
— spEngineDll.pas structures and API definitions (must be included in your

main program inside uses block).

Besides that, spEngine.dll must be copied in the directory where your main program’s
exe resides.

1.2 Library format
spEngine.dll comes in two versions X32 and X64. 32-bit dll version is in OMF format,
while 64-bit vestion is in ELF format.

1.3 Concept

spEngine accepts scanline(s) from some user created image container (TBitmap, TIEBitmap,
or any other) to perform various types of rendering/drawing onto image. Image scanlines
are shared inside speEngin’s drawing surface. Besides shared original image, internally,
another copy of the same image is created, together with two grayscale masks. All user

http://www.imageen.com

1 Introduction

images (surfaces) are kept inside Surface container, which is the main part of spEngine.
Generally, spEngine has four distinctive modules:

e Surface container: the core part of spEngine. Keeps tracking of various surfaces
(images).

e Renderer: rendering engine. In current version, only drawing is implemented.
e Brush: module that takes care of various user created/selected brushes.
e Shape: module used to create/select various shape types (graphics primitives).

Note: speEngine only works with 24-bit images (3 channels RGB) with or without alpha
mask (8-bit, one channel). Alpha mask address is passed as separate parameter when
surface is constructed, i.e. 32-bit images (RGBA) are not currently supported. User
must supply alpha channel as separate gray-scale image.

1.4 Version history

spEnigne 0.6

e Changes in solid brush specific structure/record:
— Shape parameter can have values 0,1,2 (circle, square, triangle).

— Filled parameter added: true by default. If set to false, only shape border
will be drawn with desired Thickness.

— Angle parameter added: angle of shape (triangle only). Angle is given in
degrees.

— RandomAngle parameter added: true by default - a random angle [0, 360)
will be picked. If set to false, Angle value is used.
e New functions added:
— spDeleteClonelmage: delete clone image container.
— speCloneSelf: use image you’re drawing on as clone image.
— spSetSelection: set selection mask (8-bit singla channel image).
— spDeleteSelection: delete selection mask container.

— spSelectionClip: set selection clipping on/off.
e Tpx SelectionParams structure/record removed.

e Change in Tpx_ _BrushSpraySpecific structure/record: Gravity parameter type
changed from int (Integer) to float (Single).

e Brush median filter implemented.

spEngine 0.5:

1 Introduction
e Corrected bug when drawing on images with alpha channel with capacity < 100%:
brush capacity was always 100% on arease with alpha channel > 0.
e Added two new functions for setting clone image.
e Scratch option enabled.
spEngine 0.4:

e Corrected bug in speSetSurface when previously created surface is replaced with
new one (program crash).

e Brush (stroke) envelope added: check Envelope... parameters in common brush
structure/record. Envelope string is set by two new APIs: speSetSizeEnvelope,
speSetCapacityEnvelope.

e speSetScaleColors API added: used to set top and bottom color values for normal-
ization.

e Various arithmetic modes available. Note: modes px ARITH BUMP, px ARITH BUMP COLOR
are intended for so called “pixels shifting” rendering mode which is not currently
implemented.

e Corrected bug when drawing on image with alpha channel.

e New drawing parameter added in DrawParams structure/record - DrawOnAlpha
(Boolean): if this parameter is set to true, drawing will occure only on areas with
alpha > 0. Default value of DrawOnAlpha is false.

e Corrected bug when drawing shapes programmatically: current shape (set with
speSetShape) was not restored.

e MainMode parameter name in DrawParams structure changed to ArithMode.
e Corrected bug when SizeVary > 0: internal brush memory was not properly cleared.
spEngine 0.3:

e DrawTipOnMouseDown parameter added in RenderParams (default = false). When
set to true and “free hand” shape is selected, drawing starts in speHandMouseDown
APIT (brush tip will be drawn). Otherwise, drawing starts in speHandMouseMove
APL

e Corrected bug in speHandMouseUp API (internal masks ROIs were not cleared).
spEngine 0.2:

e initial version.

2 Initialization and surface container

2.1 Initialization

Before starting to play with spEngine, initialization API must be invoked: spelnit
function must be called once at the beginning of your main program. spelnit API accepts
one parameter of type Tpx RenderData structure(record) and it’s called by reference:

//C++:
bool __stdcall spelnit(Tpx_RenderData &rd);
//Delphi:

function spelnit(var rd: Tpx_RenderData): Boolean stdcall;

spelnit API will return true if everything passed OK and your structure (record) will
be filled with default render data values. Tpx_RenderData structure is nested structure
that contains following structures (records):

e RenderParams (type Tpx RenderParams) - contains main rendering parameters.
e DrawParams (type Tpx DrawParams) - contains main drawing parameters.

e ShadowParams (type Tpx ShadowParams) - contains parameters that control drop
shadow behavior.

To check current version of the engine, use speGetVersion function:

//Ct+:

wchar_t*
//Delphi:
function speGetVersion: PWideChar stdcall;

_stdcall speGetVersion(void);

2.2 Surface container

Once the initialization is invoked, you must add/create drawing surface from your image
container. speAddSurface API creates empty slot inside surface container and returns
current surface index:

//C++:
int __stdcall speAddSurface(void);

//Delphi:
int __stdcall speAddSurface(void);

To set/create surface related to newly created surface slot, spEngine uses two different
approaches:

2 Initialization and surface container

e speSetSurface: if your image container is contiguous (i.e. scanlines are not frag-

mented):
//C++:
bool __stdcall speSetSurface(void #*scanOrig, void *scanAlphaOrig,
int width, int height,
unsigned int scanlineAlignment);
//Delphi:

function speSetSurface(scanOrig: Pointer;
scanAlphaOrig: Pointer;
width: Integer; height: Integer;
scanlineAlignment: Cardinal): Boolean stdcall;

e speSurfaceBegin/ speSurfaceAddScanline/ speSurfaceFinish combination:
if your image container is not contiguous (i.e. scanlines are fragmented):

//C++:

bool __stdcall speSurfaceBegin(int width, int height);

bool __stdcall speSurfaceAddScanline(void *scanOrig, void *scanAlphaOrig);
bool __stdcall speSurfaceFinish(void);

//Delphi:

function speSurfaceBegin(width: Integer;
height: Integer): Boolean stdcall;
function speSurfaceAddScanline(scanOrig: Pointer;
scanAlphaOrig: Pointer):
Boolean stdcall;
function speSurfaceFinish: Boolean stdcall;

So, an example of initialization and adding/setting some contiguous surface in C-++
should look like:

//C++ example:

// public or private variable

Tpx_RenderData renderData;

// this two lines are usually added in form’s constructor:
// all TIEBitmaps are contiguous
IEGlobalSettings () ->AutoFragmentBitmap = false;

// initialize spEnigne and fetch default render data
spelnit (renderData);

// Let’s assume that some 24-bit RGB map of type TIEBitmap is already created
int h = map->Height;

int w = map->Width;

// add empty surface to surface container

speAddSurface ();

// set surface data

speSetSurface (map->ScanLinel[h -1]1, 0, w, h, 4);

// Surface is ready for drawing.

2 Initialization and surface container

In the example above, there is no alpha map so we are setting scanAlphaOrig pointer
to 0. Also, we assume that scanlines are aligned to double word boundary and we set
parameter scanlineAlignemnt to 4 bytes. An example of adding/setting non-contiguous
surface in Delphi should look like:

// Delphi example:
//public or private variable
var
renderData: Tpx_RenderData;
// this two lines are usually added in form’s constructor:
// all TIEBitmaps are non-contiguous (fragmented)
IEGlobalSettings () . AutoFragmentBitmap := True;
spelnit (renderData);

// Let’s assume that some 24-bit RGB map of type TIEBitmap is already created
var h, w, i: Integer;
h := map.Height;
w := map.Width;
// add empty surface to surface container
speAddSurface;
// prepare surface for scanline addition
speSurfaceBegin(w, h);
// add all scanlines to the surface
for i := 0 to h-1 do

speSurfaceAddScanline (map.ScanLine[i], nil);
// finish scanline addition
speSurfaceFinish;
// Surface is ready for drawing.

Again, in the example above, there is no alpha map, so we are passing nil as scanAl-
phaOrig parameter. Because image is fragmented, we don’t need scanlineAlignement
information as we are simply storing each scanline pointer into internal surface scanlines
array. If we work with more then one surface (bitmap) inside surface container, we need
to select surface (set current drawing surface) using speSelectSurface API:

//C++:
bool __stdcall speSelectSurface(int sIndex);
//Delphi:

speSelectSurface(sIndex: Integer): Boolean stdcall;

To delete some surface from surface container, use speDeleteSurface API:

//C++:
bool __stdcall speDeleteSurface(int sIndex);
//Delphi:

speDeleteSurface (sIndex: Integer): Boolean stdcall;

Note: when some surface with index slndex is deleted (removed) from surface container,
current surface becomes the surface with index = sIndex + 1. If such surface does not
exist, current index is set to 0. If surface container is empty after surface deletion, any
call to drawing APIs may result in program crash, so keep that in mind.

3 Shapes, brushes and rendering types

3.1 Shapes

Currently, 13 shapes are supported and are defined as enum type in spGlobals.h (C+-+)
and spGlobals.pas (Delphi) :

e px_shpFreeHand - free hand drawing.

e px_shplLine - straight line.

e px_shpEllipse - ellipse outlined.

e px_shpEllipseFilled - filled ellipse, outlined with current stroke (brush).

e px_shpEllipseFilledNB - filled ellipse without outline (border). NB stands for no
border.

e px_shpRectangle - rectangle outlined.
e px_shpRectangleFilled - filled rectangle, outlined with current stroke (brush).

e px_shpRectangleFilledNB - filled rectangle without outline (border). NB stands
for no border.

e px_shpPolyline - polyline.
e px_shpPolygon - polygon outlined (closed polyline).
e px_shpPolygonFilled - filled polygon, outlined with current stroke (brush).

e px_shpPolygonFilledNB - filled polygon without outline (border). NB stands for
no border.

e px_shpSplineCR - smooth polyline (Catmul-Rom spline).

In demo program, distributed together with spFEngine.dll, shape is selected by right mouse
click on image view: a pop-up window with available shapes is displayed. Initially, shape
is set to free hand. To set current shape use speSetShape API:

//CH+:

bool __stdcall speSetShape(TspeShapeType shapeType);

//Delphi:

function speSetShape(shapeType: TspeShapeType): Boolean stdcall;

When some shape is selected/set it becomes current shape for all surfaces inside surface
container.

10

3 Shapes, brushes and rendering types

3.2 Brushes

Currently, 9 brushes (brush tips) are supported:

e px_brshNeon - neon type brush tip with various modes of intensity falloff from the
center of the brush tip.

e px_brshSolid - solid brush tip.

e px_brshSpray - spray style brush tip.

e px_ brshStar - star style brush tip (a bunch of lines from center).

e px_brshHair - hair style brush tip.

e px_brshMesh - random lines mesh.

e px_brshParallel - brush tip with parallel lines.

e px_brshStamp - brush tip that uses grayscale image as brush tip (alpha channel).
e px_brshCml - coupled map lattice (cellular automata) brush tip.

All brushes have brush common and brush specific parameters (stamp brush does not
have specific parameters). Brush common parameters do not depend on brush type and
are used to specify brush tip size, capacity, step, colors, stroke rules, etc. Brush specific
parameters depend on selected brush type. Brushes are stored in brush bucket. which
can hold up to 9 brushes. This comes handy when user performs free hand drawing and
wants to change brush tip on the fly. When some brush is selected/set it becomes current

brush for all surfaces inside surface container. To get/set brush parameters use following
APls:

//C++:

bool __stdcall speGetBrushCommon (Tpx_BrushCommonParams &par);
bool __stdcall speSetBrushCommon (Tpx_BrushCommonParams &par);
//Delphi:

function speGetBrushCommon (var par: Tpx_BrushCommonParams):
Boolean stdcall;

function speSetBrushCommon(var par: Tpx_BrushCommonParams):
Boolean stdcall;

To getting/set brush specific following APIs are used:

//C++:
void=* stdcall speGetBrushSpecific(void);

bool __stdcall speSetBrushSpecific(void #*bsp);

//Delphi:
function speGetBrushSpecific: Pointer stdcall;
function speSetBrushSpecific (vBsp: Pointer) : Boolean stdcall;

11

3 Shapes, brushes and rendering types

As each brush specific parameters has it’s own structure, when getting brush specific
parameters, you mast cast void pointer to respective structure (record). Every time a
new brush is created, common and specific brush parameters are set to default values.
To select some previously created brush from brush bucket use speSelectBrush API:

//C++:
bool __stdcall speSelectBrush(int bIndex);
//Delphi:

function speSelectBrush(bIndex: Integer): Boolean stdcall;

Stamp brush does not have any specific parameters, but has additional function that sets
grayscale image (usually alpha channel) as brush stamp:
//C++:

bool __stdcall speSetStamp(void *buffer, int width, int height,
unsigned int scanlineAlignement);

//Delphi:

function speSetStamp(buffer: Pointer; width: Integer; height:
Integer; scanlineAlignement: Cardinal):
Boolean stdcall;

As you may notice, speSetStamp API currently accepts only contiguous, non-fragmented
images. Usually, user passes last scanline as buffer parameter.

3.3 Rendering types

Currently, only one rendering type is supported (px_rndDraw). More rendering types
to come (warp, color, filter 3x3, etc..). To set rendering type, use speSetRender API:

//C++:

bool __stdcall speSetRender (TspeRenderType renderType);

//Delphi:

function speSetRender (renderType: TspeRenderType): Boolean stdcall;

Besides rendering types, there are four different rendering modes defined in spGlobal.h
(spGlobal.pas):

e px RENDER AUTOMATIC - default mode: will set rendering mode depending
on common brush parameters.

e px RENDER SLOW - slow rendering: for every stroke, each brush tip is filtered
and rendered stepwise.

e px RENDER MEDIUM - medium rendering: complete stroke is filtered and then
each brush tip is rendered stepwise.

e px RENDER FAST - fast rendering: complete stroke is filtered and rendered at
once.

e px RENDER DUMMY - no rendering is performed.

12

3 Shapes, brushes and rendering types

Rendering mode is specified in Tpx RenderData structure under Tpx RenderParams
structure (record):

//C++ example:
TpxRenderData renderData;
renderData.RenderParams.RenderingMode = px_RENDER_AUTOMATIC;

3.4 Prepare everything for drawing

The best way to see how to deal with all previous APIs is to have a look at demo program
source code. Usually, after surface is created and set, we will call a sequence of APIs
that look like the code below:

//C++ example:

//structures - public or private variables
Tpx_RenderData renderData;
Tpx_BrushCommonParams brushCommonParams;
Tpx_BrushNeonSpecific* neonSpecific;

// we have already set some surface!!!

speSetShape (px_shpFreeHand) ;

speSetBrush (px_brshNeon);

// £ill brush common params structure with default data:
speGetBrushCommon (brushCommonParams) ;

// change parameters to user defined values:

brushCommonParams.Size = 60;

brushCommonParams.Capacity = 100;
brushCommonParams.ColorVary = 0; // no color variation
brushCommonParams.SizeVary = 0; // no size variation
brushCommonParams.CapVary = 0; // no capacity variation
brushCommonParams.Step = 2;

brushCommonParams.ChalkOn = false;
brushCommonParams.BlurOn = true; // blur on
brushCommonParams .BlurValue = 1; // blur radius

// set standard brush colors
speSetStandardColors ((unsigned int)clPurple,

(unsigned int)clRed,

(unsigned int) clGreen);

// set new brush common parameters
speSetBrushCommon (brushCommonParams) ;
// get neon brush specific parameters:
neonSpecific = static_cast <Tpx_BrushNeonSpecific*>(speGetBrushSpecific());
// change specific parameters to user defined values:
neonSpecific->FalloffIndex = 0; // linear fall-off
neonSpecific->LinearValue = 80; // 20% solid 80% fall-off
neonSpecific->TrigonometricValue = 32;
// set render type (this can be called only once for complete program)
speSetRender (px_rndDraw) ;

13

3 Shapes, brushes and rendering types

// change render data parameters to user defined value:

renderData.RenderParams.RenderingMode =
renderData.ShadowParams.MainMode = 1;
renderData.RenderParams.DoShadow = true;
renderData.ShadowParams.Yoffset = 15;
renderData.ShadowParams.Xoffset = 15;

// set new values

speSetRenderData (renderData);
// we’re ready for free hand drawing

px_RENDER_AUTOMATIC;
// always set to 1

// perform shadow drop

Delphi programmers can check demo program source code to see how to manipulate
various parameters. As you may notice, in previous example, there is a call to speSet-
StandardColors API which is a part of color brush settings APIs and we will explain

those APIs in following chapter

14

4 Colors, textures and color scheme

4.1 Standard colors

To get/set standard brush tip colors we use following APIs:

//C++:
bool __stdcall speSetStandardColors(unsigned int primColor,
unsigned int secColor,
unsigned int polyColor);
bool __stdcall speGetStandardColors (unsigned int &primColor,
unsigned int &secColor,
unsigned int &polyColor);
//Delphi:
function speSetStandardColors(primColor: Cardinal;
secColor: Cardinal;
polyColor: Cardinal): Boolean stdcall;
function speGetStandardColors(var primColor: Cardinal;
var secColor: Cardinal;
var polyColor: Cardinal): Boolean stdcall;

Function speSetStandardColors API sets three colors in currently selected brush: primary
color, secondary color and polygon filling color.

4.2 Palette

Besides drawing with standard colors there is also possibility to draw with palette color,
textures and using pixels from auxiliary image (clone brush):

//C++:
bool __stdcall speSetPalette3C(unsigned int ci,
unsigned int c2,
unsigned int c3);
bool __stdcall speSetPalette255C(unsigned int *pal);
//Delphi:
function speSetPalette3C(cl: Cardinal;
c2: Cardinal;
c3: Cardinal): Boolean stdcall;
function speSetPalette255C(pal: PCardinal) : Boolean stdcall;

Function speSelPalette3C API is used to create palette (255 colors) by smoothly blending
three user’s supplied colors. Function speSetPalette255C accepts unsigned int pointer to
preciously defined palette array of size 255 filled by user (or loaded from a file).

15

4 Colors, textures and color scheme

4.3 Textures

Instead of using single color or palette colors, you can relate brush tip to some 24-bit
texture:

//C++:

bool __stdcall speSetTexture(void #*buffer, int width, int height,
unsigned int scanlineAlignement);

bool __stdcall speSetPolyTexture(void *buffer, int width, int height,
unsigned int scanlineAlignement);

bool __stdcall speDeleteTexture(void);

bool __stdcall speDeletePolyTexture(void);

//Delphi:

function speSetTexture(buffer: Pointer; width: Integer; height: Integer;
scanlineAlignement: Cardinal):
Boolean stdcall;

function speSetPolyTexture(buffer: Pointer; width: Integer; height: Integer;
scanlineAlignement: Cardinal):
Boolean stdcall;

function speDeleteTexture: Boolean stdcall;

function speDeletePolyTexture: Boolean stdcall;

Again, as with stamp brush, APIs currently accept only contiguous, non-fragmented
images. Usually, user passes last scanline as buffer parameter. First function (spe-
SetTexture) sets brush tip texture, while second one (speSetPolyTexture) sets polygon
filling texture. Functions speDeleteTexture and speDeletePoly Texture are used to delete
texture/polytexture from selected brush.

4.4 Background tiles

There is another type of texture used to simulate various canvases and is called back-
ground tile, usually some grayscale seamless texture that can be set/deleted using fol-
lowing APlIs:

//C++:

bool __stdcall speSetBackgroundTile(void *buffer, int width, int height,
unsigned int scanlineAlignement);

bool __stdcall speDeleteBackgroundTile (void);

//Delphi:

function speSetBackgroundTile(buffer: Pointer; width: Integer; height: Integer;
scanlineAlignement: Cardinal):
Boolean stdcall;

function speDeleteBackgroundTile: Boolean stdcall;

Again, as with stamp brush, speSetBackgroundTile function accepts only contiguous,
non-fragmented images (bitmaps). User passes last scanline as buffer parameter.

16

4 Colors, textures and color scheme

4.5 Color scheme

All APIs described in previous sections are closely related to color scheme which is used

to set the way colors are combined/rendered.To set desired color scheme, use following
API:

//C++:
bool __stdcall speSetColorScheme(const int cScheme);
// Delphi:

function speSetColorScheme (const cScheme: Integer): Boolean stdcall;

Color scheme types (indexes) are defined in spGlobals.h (spGlobals.pas):
e px CTYPE PRIMARY - draw stroke with primary color.
e px CTYPE SECONDARY - draw stroke with secondary color.

e px CTYPE MIXED - draw stroke mixing (blending) primary and secondary with
respect to brush capacity at given point (alpha blending).

e px CTYPE SOLIDMIXED - draw stroke mixing (blending) primary and sec-
ondary color with respect to brush capacity at given point, but render resulting
color with full capacity.

e px CTYPE PALETTE - draw stroke using brush capacity at given pint as palette
index [0..255] and perform alpha blending.

e px CTYPE SOLIDPALETTE - draw stroke using brush capacity at given point
as palette index [0..255] and render resulting palette color with full capacity.

e px CTYPE TEXTUREALIGNED - draw stroke using loaded 24-bit texture (usu-
ally seamless) and take care of alignment (wrapping) .

e px CTYPE TEXTUREFIXED - draw stroke using loaded 24-bit texture (usually
seamless) and always set brush tip center to texture center.

e px CTYPE CLONEALIGNED - draw stroke using pixels from some auxiliary
image (clone brush at selected point) and take care of alignment (wrapping).

e px CTYPE CLONEREPOS - as above, but after stroke is completed, reposition
clone position: set brush tip center to selected point.

e px CTYPE CLONEFIXED - always align brush tip center with selected point.

e px CTYPE PALETTE STEP C - (step circular) draw stroke using palette,
where palette index is increased for each stroke step. When palette index reached
maximum (255), index is set to 0.

e px CTYPE PALETTE STEP_ FB - (forward-backward) draw stroke using palette
as above, but when palette index reaches maximum (255), for each subsequent step,
palette index is decreased.

17

4 Colors, textures and color scheme

e px CTYPE PALETTE_ STEP_ STOP - (step stop) as above, but when palette
index reaches maximum value (255), the rest of stroke is drawn with last color
entry (index = 255).

e px CTYPE MOUSE_ DOWN - color is picked from current image/surface at
mouse-down position (x,y) and is used as primary color.

e px CTYPE IMAGE STEP - similar to px CTYPE MOUSE DOWN, but the
new color is picked at each stroke step.

e px CTYPE ABSQUE - no color, sine colore: this mode has sense when brush
bumping is set, otherwise nothing will be rendered.

e px CTYPE SIDEKICK - draw stroke using colors from sidekick image. This
option is not yet implemented.

e px CTYPE GRADIENT STEP_C - (step circular) similar to
px_CTYPE PALETTE STEP C,butinstead of palette, primary color-secondary
color gradient is used.

e px CTYPE_ GRADIENT STEP_ FB - (forward-backward) similar to
px CTYPE PALETTE STEP FB, butinstead of palette, primary color-secondary
color gradient is used.

e px CTYPE GRADIENT STEP STOP - (step stop) similar to
px_ CTYPE PALETTE STEP STOP, but instead of palette, primary color-
secondary color gradient is used.

Note: if you select px CTYPE TEXTUREALIGNED color scheme and texture is not
set, px_ CTYPE PRIMARY color scheme will be used.

4.6 Shadow color

Last API in this chapter sets shadow color. Drop shadow is a render option that can
cast/drop shadow under the last shape drawn:

//C++:
bool __stdcall speSetShadowColor (unsigned int sColor);

//Delphi:
function speSetShadowColor (sColor: Cardinal): Boolean stdcall;

Here is a Delphi example (see demo program) which shows how to set render parameters
to perform shadow casting under drawn shape:

//Delphi example:
procedure TForml.shadowChange (Sender: TObject);
var
sc: Cardinal;
begin

18

4 Colors, textures and color scheme

renderData.RenderParams.DoShadow := True;

// MainMode parameter value sets the shadow mode.
// Currently, only one mode is available

// and MainMode must be set to 1
renderData.ShadowParams.MainMode := 1;

// x and y offest of the shadow
renderData.ShadowParams.Xoffset
renderData.ShadowParams.Yoffset
// blur shadow
renderData.ShadowParams.BlurOn := True;
// blur radius
renderData.ShadowParams.BlurValue 1= 33
// shadow capacity
renderData.ShadowParams.Capacity = 60;
// set/modify render data
speSetRenderData (renderData);

// set shadow color to black

10;
10;

sc := Cardinal(clBlack);
speSetShadowColor (sc);
end ;

When ShadowParams structure (record) in render data record is set according to example
above, after shape is drawn, the shadow of the shape will be casted/drawn with given
color, offset ,blur radius and capacity.

19

5 Drawing

Finally, how to draw a stroke defined by shape, brush and color onto our image/surface//-
canvas? We will first show how to perform free hand drawing.

5.1 Free hand

To perform free hand drawing we must engage mouse events, namely: OnMouseDown,
OnMouseMove and OnMouseUp. Each event is connected to respective API:

//C++:
bool __stdcall speHandMouseDown (TShiftState Shift, int X, int Y);
bool __stdcall speHandMouseMove (TShiftState Shift, int X, int Y);
bool __stdcall speHandMouseUp(TShiftState Shift, int X, int Y);
//Delphi:
function speHandMouseDown (Shift: TShiftState;
X: Integer;
Y: Integer): Boolean stdcall;
function speHandMouseMove (Shift: TShiftState;
X: Integer;
Y: Integer): Boolean stdcall;
function speHandMouseUp(Shift: TShiftState;
X: Integer;
Y: Integer): Boolean stdcall;

Although speHandMouseXXX function keeps track if left-mouse button is down or not,
in order to make life easier (especially for debugging purposes) we can add a Boolean
variable which will tell us if left mouse button is down or not, so we don’t need to call
speHandMouseMove function unnecessary. So here is an example of free-hand drawing
using OnMouseXXX events:

//C++ example:
// PaintView is of type TImageEnVect and surface is created from it’s IEBitmap.
// TImageEnVect onMouseDown event:
void __fastcall TForml::PaintViewMouseDown(TObject *Sender,
TMouseButton Button, TShiftState Shift,
int X, int Y)

{

if (Button != mbLeft)
return;

mouseDown = true;

X = PaintView->CurrentLayer ->ConvXScr2Bmp (X);
Y = PaintView->CurrentlLayer ->ConvYScr2Bmp (Y);

20

5 Drawing

speHandMouseDown (Shift, X, Y);

}
// TImageEnVect onMouseMove event:
void __fastcall TForml::PaintViewMouseMove (TObject *Sender,
TShiftState Shift, int X, int Y)
{
if (!_mouseDown)
return;
X = PaintView->CurrentLayer ->ConvXScr2Bmp (X);
Y = PaintView->CurrentLayer->ConvYScr2Bmp (Y);

speHandMouseMove (Shift, X, Y);
PaintView->Update ();
X
// TImageEnVect onMouseUp event:
void __fastcall TForml::PaintViewMouseUp(TObject *Sender,
TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (!_mouseDown)
return;
X = PaintView->CurrentLayer ->ConvXScr2Bmp (X);
Y = PaintView->CurrentlLayer->ConvYScr2Bmp (Y);

speHandMouseUp (Shift, X, Y);
}

That’s it! All events are very similar. Delphi programmers can check demo source code
to see a Delphi version of previous example.

5.2 Other shapes

To draw other shapes (ellipses, rectangles, etc...) instead of speHandMouseXXX func-
tions we use speObjectMouseXXX functions:

//C++:
bool __stdcall speObjectMouseDown(TShiftState Shift, int X, int Y);
bool __stdcall speObjectMouseMove (TShiftState Shift, int X, int Y);
bool __stdcall speObjectMouseUp (TShiftState Shift, int X, int Y);
//Delphi:
function spelbjectMouseDown (Shift: TShiftState;
X: Integer;
Y: Integer): Boolean stdcall;
function speObjectMouseMove (Shift: TShiftState;
X: Integer;
Y: Integer): Boolean stdcall;
function spelbjectMouseUp(Shift: TShiftState;
X: Integer;
Y: Integer): Boolean stdcall;

So, for instance if you want to draw an outlined ellipse, here is a sequance of events (now
this time in Delphi):

21

5 Drawing

//Delphi example:
// on mouse down event

Integer);

procedure TForml.PaintViewMouseDown(Sender: TObject;
Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer);

begin

if (Button <> mbLeft) then

exit;

_mouseDown := True;

X := PaintView.CurrentLayer.ConvXScr2Bmp (X);

Y := PaintView.CurrentLayer.ConvYScr2Bmp(Y);

speObjectMouseDown (Shift, X, Y);

_hobj := PaintView.AddNewObject ();

PaintView.ObjLayer [_hobj] := PaintView.LayersCurrent;

PaintView.0ObjKind[_hobj] := i1ekELLIPSE

PaintView.0ObjLeft [_hobj]l := X;

PaintView.0ObjTop[_hobj]l := Y;

PaintView.0ObjWidth[_hobj] := 0;

PaintView.0ObjHeight [_hobj]l := 0;

PaintView.ObjBrushStyle[_hobj] := bsClear;

PaintView.ObjPenColor [_hobj] = clRed;

PaintView.0ObjPenWidth[_hobj] := trackSize.Position;

PaintView.0ObjStyle[_hobj] := [ievsVisible];

end ;

// on mouse move event

procedure TForml.PaintViewMouseMove (Sender: TObject;
Shift: TShiftState; X, Y:

var

rect: TRect;
begin
if not _mouseDown then
exit;

X := PaintView.CurrentLayer.ConvXScr2Bmp(X);

Y := PaintView.CurrentLayer.ConvYScr2Bmp(Y);

speObjectMouseMove (Shift, X, Y);

speGetMouseData (MouseData);

rect.left := MouseData.X_down;

rect.top = MouseData.Y_down;

rect.right := MouseData.X_move_to;

rect.bottom := MouseData.Y_move_to;

rect.NormalizeRect;

PaintView.0ObjLeft[_hobj]l := rect.left;

PaintView.0bjTop[_hobj] := rect.top;

PaintView.0ObjWidth[_hobj] := rect.Width;

PaintView.0ObjHeight [_hobj] := rect.Height;

end ;

// on mouse up event

procedure TForml.PaintViewMouseUp(Sender: TObject;

22

5 Drawing

Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer);
begin
if not _mouseDown then
exit; // following lines do not affect drawing as they
_mouseDown := False;
PaintView.RemoveAllObjects;

X := PaintView.CurrentlLayer.ConvXScr2Bmp (X);
Y := PaintView.CurrentlLayer.ConvYScr2Bmp (Y);
speObjectMouseUp (Shift, X, Y);

end;

It seams complicated at a first glance!? Not so. We are using TImageEnVect ellipse
object to draw temporary vectorial object (iekEllipse), which we can stretch around to
accommodate our ellipse. It’s more some kind of preview. After left mouse button is
release, vectorial object (iekEllipse) is removed and real elliptical stroke with selected
brush, color and color scheme is rendered. In this example we used TlmageEnVect image
container and viewer. If you use some other kind of image viewer, you must accommodate
it’s mouse events, but you’ll always have a call to respective speObjectMouseXXX APIs.
As you may notice in previous example, there was a call to speGetMouseData API. This
function fills a structure (record) of type Tpx_ MouseData which contains a bunch of
useful information such as stroke beginning coordinate, ending coordinates, min, max,
etc.. Here is a function prototype:

//C++:

bool __stdcall speGetMouseData(Tpx_MouseData &md);

//Delphi:

function speGetMouseData(var md: Tpx_MouseData) : Boolean stdcall;

5.3 Drawing shapes programmatically

If you want to draw some shape programmatically without using mouse events, there is
a class of APIs that can perform such task:

//C++:

bool __stdcall speDrawRectangleRect(TRect *objRect,
Tpx_Geometry &geometry);

bool __stdcall speDrawEllipseRect (TRect *objRect,
Tpx_Geometry &geometry);

bool __stdcall speDrawRectangle(int x1, int yl1, int x2, int y2,
Tpx_Geometry &geometry);

bool __stdcall speDrawEllipse(int x1, int yl1, int x2, int y2,
Tpx_Geometry &geometry);

bool __stdcall speDrawPoly(TPoint #*pts, int ptsCount,
Tpx_Geometry &geometry);

//Delphi:

function speDrawRectangleRect(var objRect: PTRect;

23

5 Drawing

var geometry: Tpx_Geometry): Boolean stdcall;
function speDrawRectangle(xl, yl1, x2, y2: Integer;

var geometry: Tpx_Geometry): Boolean stdcall;
function speDrawEllipseRect(var objRect: PTRect;

var geometry: Tpx_Geometry): Boolean stdcall;
function speDrawEllipse(xl, yl, x2, y2: Integer;

var geometry: Tpx_Geometry): Boolean stdcall;
function speDrawPoly(var pts: PTPoint; ptsCount: Integer;

var geometry: TPx_Geometry): Boolean stdcall;

Here we introduce a new structure (record) of type Tpx Geometry which is used to
control output of our object. Here are an explanation of structure’s entries:

e SimplifyPolyline - (boolean) perform polyline simplification.

e SimplifyAlgorithm - (integer) a type of simplification algorithm to use. Currently
only Douglass-Poucker algorithm is available (must be set to 0)

e SimplifyDPTolerance - (integer) tolerance in pixels

e SimplifyMaxPts - (integer) maximum number of polyline points. If this number is
higher then zero, an iteration is performed until max number is reached. If this
number is 0 (default), only one iteration is performed.

e PolygonModification - (integer): 0 - no modification, 1 - simplify polygon, 2 -
convert polygon to splinegon.

e RotationAngle - (double) rotate an object by given angle (degrees).

e RotationOrigin - (TPoint) origin of rotation. If RotationOrigin.x and RotationO-
rigin.y are set to -1, rotation is perform around object’s center.

e Filled - (Boolean) fill the object interior (if object is closed).
e Border - (Boolean) draw the stroke over object’s border.

e PolyClosed - (Boolean) close polyline (create polygon).

Here is an example (C++) on how to draw ellipse rotated around the center:

//C++ example:

Tpx_Geometry geo;

// rotation angle in degrees.
geo.RotationAngle = 23;

geo.Filled = false;

geo.Border = true;

// following two lines indicate that rotation
// will be performed around ellipse’s center
geo.RotationOrigin.x = -1;
geo.RotationOrigin.y = -1;

// draw ellipse with given brush and color sceheme
speDrawEllipse (100, 100, 600, 400, geo);

24

5 Drawing

At this point, we have covered all basic APIs available in spEngine, except one:

//C++:s

bool __stdcall speUpdateSurface(void);
//Delphi:

function speUpdateSurface : Boolean stdcall;

Whenever the surface original image is modified externally (not with speEngine APIs)
we need to tell this to surface container. As mentioned previously, surface consists of
original image (shared) and another copy of the same image which is not shared. When
original image is modified by some other means that do not include spEngine APIs call,
speUpdateSurface must be called to ensure that non-shared copy of original image
does not differ from shared original image. Here is an example. Let’s say we have saved
a copy of original image before drawing is performed (some kind of undo map) and we
want to clear (undo) all our drawings:

//Delphi example:
//let’s say we have saved original image in _undoMap
//now, let’s clear all drawings:
procedure TfrmMain.btnUndoClick (Sender: TObject);
begin

_undoMap.DrawToTIEBitmap (PaintView.IEBitmap, 0, 0);
speUpdateSurface;

PaintView.Update;
end;

As content of undo map is drawn onto original image, we must synchronize current
surface with new image state, so we call speUpdateSurface function to do that.

25

6 Advanced drawing

6.1 Stroke envelope

So far, we have covered simple drawing techniques, without calling any additional API.
This section covers drawing using stroke envelope. Stroke envelope is used to vary brush
tip size (or capacity) while stroke is drawn. You may notice that inside BrushCommon
structure/records there are two parameters that can change brush size/capacity while
stroke is drawn (SizeVary and CapVary). Both parameters range from 0 to 100 and give
percentage of size/capacity variations of brush tip inside stroke. Brush tip variations can
not exceed initial size, i.e. variations are always smaller then initial value.

However, variations using SizeVary and CapVary parameters are random variations. On
the other hand, stroke envelope uses predefined patter (string) which tells spEngine how
to change size/capacity inside the stroke. When envelope is on, it will override random
variations of respective type (size/capacity).

//C++:
bool __stdcall speSetSizeEnvelope (wchar_t* str);

bool __stdcall speSetCapacityEnvelope(wchar_t* str);
//Delphi:
function speSetSizeEnvelope(str: PWideChar): Boolean stdcall;

function speSetCapacityEnvelope(str: PWideChar): Boolean stdcall;

Here is an example how to set some simple pattern for stroke envelope:

//C++ example:

UnicodeString env = "10,40,80,100";
speSetSizeEnvelope(env.c_str());
brushCommonParams.EnvelopeSizeOn = true;
brushCommonParams.EnvelopeSizeRepeat = true;
brushCommonParams.EnvelopeResolution = 4;
brushCommonParams.EnvelopeResolutionManual = true;

speSetBrushCommon (brushCommonParams) ;

In above example envelope pattern is set to “10,40,80,100” which means that stroke will
begin with 10% of original brush size, then it will go to 40% of the brush size and so
on. How fast this change occurs depends on EnveloperResolution parameter which
gives number of steps between each subsequent pattern value. By default, resolution is
set to 10 and can be changed by user. In the example above, resolution is set to 4, which
means that change from 10% to 40% will be executed in 4 steps. On each step new value
is calculated (interpolation between 10 and 40). Higher the resolution value, slower the
change in size. If EnvelopSizeRepeat is false (by default), after last size change is

26

6 Advanced drawing

achieved (lastSize), stroke continues with brush size = lastSize. If EnvelopeSizeRepeat is
set to true, pattern will be repeated when internal counter reaches the last pattern value.

The same logic applies to brush capacity envelope. Size and capacity envelope changes
may be simultaneously in single stroke. Note: size and capacity envelope patterns can
be different.

Parameter EnvelopeResolutionManual does not effect “free-hand” drawing shape, but
effects all other shapes (ellipse, rectangle, etc...). When set to false (default), envelope
resolution of a stroke going through shape’s points is calculated internally: pattern is
adjusted to shape’s points number and EnvelopeSizeRepeat (EnvelopeCapacityRepeat)
value does not have any effect. When set to true (as in example above), shape is treated
as “free-hand” drawing: envelope follows predefined resolution and repeating value.

6.2 Clone brush

To use clone brush, you must first set some clone image. It can be the same image you're
drawing on (speSetCloneSelf), or some other external image (speSetClonelmage).
Besides that, to begin drawing with clone brush, you need to set the clone image start
position:

//C++:

bool __stdcall speSetClonelImage (void *buffer, int width, int height
unsigned int scanlineAlignement, bool shared);

bool __stdcall speDeleteCloneImage(void);

bool __stdcall speCloneSelf (TspeCloneType clType);

bool __stdcall speSetClonePosition(int X, int Y);
//Delphi:
function speSetCloneImage (buffer: Pointer;
width: integer; height: Integer;
scanlineAlignement: Cardinal; shared: Boolean): Boolean stdcall;
function speDeleteClonelImage: Boolean stdcall;
function speCloneSelf (clType: TspeCloneType): Boolean stdcall;

function speSetClonePosition(X: Integer; Y: Integer): Boolean stdcall;

In order to enable clone brush drawing, you must set color scheme to: px CTYPE CLONEALIGNED,
px_CTYPE CLONEREPOS or px CTYPE CLONEFIXED. Here is an example:

//C++ example:

//load clone image

TIEBitmap cloneMap;

cloneMap = new TIEBitmap ();

TImageEnIQ0 *io = new TImageEnIO(this);
io->AttachedIEBitmap = cloneMap;
io->LoadFromFile ("C:\\art\\flowers. jpg");
io->AttachedIEBitmap = O;

delete io;

if (cloneMap)

-

27

6 Advanced drawing

{

int h = cloneMap->Height;

int w = cloneMap->Width;

// set non-shared clone map (new copy) shared = false
speSetClonelmage (cloneMap->Scanline[h-1], w, h, 4, false);
// set some starting point or use mouse to pick the coordinates
speSetClonePosition(w/2, h/2);
speSetRenderData(renderData);

// set clone reposition mode

speSetColorScheme (px_CTYPE_CLONEREPOS);

//we can delete orignal TIEBitamp, because it’s not shared
delete cloneMap;

//ready for drawing

3

When some external image is used as clone image (speSetCloneImage), you must be
careful if you use shared option, because if image is deleted, internal clone surface will
reference unexisting data. When clone image is deleted, you need to call speDelete-
Clonelmage. When you want to use image you’re drawing on as a clone image, use
speCloneSelf function. With speCloneSelf function you don’t have to worry about
deleting image/surface as it’s done internally. Threee options are available for clType
parameter:

e px_cltExternal: use external clone image if available (default).

e px_cltDirect: use original image as clone image. Clone image is updated on each
brush step.

e px_cltBuffered: use internal copy of original image. Clone image is updated
after stroke is finished (usually in MouseUp event).

When some clone color scheme is set, the engine first looks if self clonning is set (pz_ cltDirect
or pz_ cltBufferd). If not, it looks if there is external clone image. If clone image is not
set, it will draw strokes with primary color.

6.3 Output color scaling

Normally, when we manipulate pixels, each output color channel (RGB) is scaled to
[0,255]. This scaling range can be changed using speSetScaleColors API:

//C++:
bool __stdcall speSetScaleColors(unsigned int topVal,

unsigned int botVal);
//Delphi:
function speSetScaleColors(topVal: Cardinal;

botVal: Cardinal): Boolean stdcall;

Any valid color can be used for new scale. topVal value is used to set upper scale
boundary while botVal value is used to set lower scale boundary. By default topVal =
RGB(255,255,255) and botVal = RGB(0,0,0).

28

6 Advanced drawing

6.4 Pixels arithmetics

By default, strokes drawing mode (ArithMode in DrawParams) is set to px_ ARITH NORM
value: pixel value of input image at position X,Y and brush tip color are blended ac-
cording to brush mask intensity. If ArithMode is set to, let’s say px ARITH XOR,
input image pixel value is XOR-ed with current brush color value and resulting value

is blended with original input image pixel value according to brush mask intensity. All
possible modes are described in spEngine structures and constants chapter.

29

7 spEngine structures and constants

Structures/records parameters (variables) will be explained in 4 column tables:

1. Parameter (variable) name.

2. Parameter type and it’s domain (range).

3. Default parameter value.

4. Description

7.1 Tpx_ RenderData

As previously stated structure/record Tpx RenderData is nested structure and controls
global rendering parameters, i.e. once set, it will reflect rendering style on all images

inside surface container.

7.1.1 Tpx_RenderParams

Parameter Type-Domain ‘ Def. ‘ Description
ClearMask bool true Clear internal mask after drawing.
HardMask bool false Perform hard masking after drawing.
Updatelmage bool true Synchronize original image and it’s internal
copy.
AddUndo bool true Add undo slot after drawing.
RenderingMode int - |0,4] 0 Fore each mode, there is associated
constant defined in spGlobals unit:
px_RENDER_AUTOMATIC = 0
px_ RENDER SLOW =1
px_ RENDER MEDIUM = 2
px_ RENDER FAST =3
px_RENDER_ DUMMY = 4
DoShadow bool false Drop shadow after drawing.
DrawPolylInterior bool false Draw polygon interior
DrawTipOnMouseDown | bool true Draw brush tip on mouse down event.
Note: to do.

30

7 spEngine structures and constants

7.1.2 Tpx_DrawParams

‘ Parameter ‘ Type-Domain ‘ Def. ‘ Description
ArithMode int - 0, 27| 0 Arithmetic mode - sets how image pixels
are combined with brush color scheme. For
each mode, there is a constant in spGlobal
unit:
px_ARITH_mode name.
SaveMode int - 0, 27| 0 Used to save current mode.
Shape int - 0, 12] 0 Obsolete
InvertSource bool false Inverts source image (internal image
negative).
BitShift int - [-8,8] 0 Shifts source image (internal) by desired
amount of bits: left if value is positive,
right if negative.
UpdateAlpha bool true Update alpha channel after drawing.
StrokesNumber int 0 Number of strokes that will be drawn (used
for ornamental drawing). Currently not
implemented.
EraseMatchAll bool ? Erase all pixels if ArithMode =
px_ARITH ERASE
EraseMatchColorTolerance | int - [0, 255] ? Color tolerance when EraseMatchAll =
false
Note: to do.
7.1.3 Tpx_ShadowParams
‘ Parameter ‘ Type-Domain ‘ Def. Description
MainMode int - [0, 7] 0 Shadow blending mode - currently only
mode 0 is supported.
Xoffset int 4 Shadow displacement in X directon.
Yoffset int 4 Shadow displacement in Y directon.
BlurOn bool false Apply blur filter on shadow.
BlurValue int - |1, n| 1 Blur filter radius.
Capacity int [0, 100] 100 Shadow capacity/opacity percentage.

Note: shadow color is controlled/set using speSetshadowColor function.

7.2 Tpx_BrushCommonParams

This structure/record contains various brush parameters (common to all brushes) and

will be explained by sections.

31

7 spEngine structures and constants

7.2.0.1 Brush tip parameters

‘ Parameter ‘ Type-Domain ‘ Def. Description
ListIndex int - [0, 9] 0 Currently not used- will return brush
bucket index

Size int - |1, nJ 20 Brush tip size
Capacity int - [0, 100] 100 Brush capacity/opacity percentage.

ColorVary int - [0, 100] 0 Max. color variation percentage
(randomized).
SizeVary int - [0, 100] 0 Max. size variation percentage
(randomized).
CapVary int - [0, 100] 0 Capacity/opacity variation percentage
(randomized).
Step int - [1, n] 2 Brush tip step.
Note: to do.
7.2.1 Brush filter parameters
‘ Parameter ‘ Type-Domain Def. Description
ChalkOn bool false Perform chalk effect
InvertOn bool false Invert brush intensity
InvertValue int - [1, 255] 16 Invert threshold: only intensities above this
value will be inverted.

CloseOn bool false Perform close morphological filter.

Currently not implemented.
CloseValue int - [1, n] 1 Number of close filter iterations. Currently
not implemented.

BlurOn bool false Perform blur filter.
BlurValue int - [1, n] 1 Blur filter radius.
MedianOn bool false Perform median filter.

MedianValue int - [1, n] 1 Median filter radius.
Note: to do.

32

7 spEngine structures and constants

7.2.2 Brush bumping parameters

‘ Parameter ‘ Type-Domain ‘ Def. Description
BumpOn bool false Perform brush bumping effect.
BumpSoft bool false Perform soft bumping (if BumpOn = true).
BumpScaleValue float - |0, n] 1 Bumping scale.
BumpThresholdValue int - [0, 255] 0 Bump threshold value: only intensities
above this value will be bumped.
BumpRoughnessValue int - [0, 255] 0 Bump roughness (randomized).
BumpXoffset Value int 1 Bump displacement in X direction (“light”
position).
BumpYoffset Value int -1 Bump displacement in Y direction (“light”
position).
BumplInvertThreshold bool false Invert threshold value (255 -
BumpThresholdValue).
Note: to do.
7.2.3 Brush envelope parameters
‘ Parameter ‘ Type-Domain ‘ Def. ‘ Description
EnvelopeSizeOn bool false Apply stroke size envelope.
EnvelopeCapacityOn bool false Apply stroke capacity/opacity envelope.
EnvelopeSizeRepeat bool true | Repeat size envelope while stroke is drawn.
EnvelopeCapacityRepeat bool true Repeat capacity /opacity envelope while
stroke is drawn.
EnvelopeResolution int - [0, n] 10 Envelope resolution.
EnvelopeResolutionManual | bool false Set manual resolution (used for “delayed”
shapes).
Note: to do.
7.2.4 Brush tip jittering
‘ Parameter ‘ Type-Domain ‘ Def. Description
JitterOn bool false Perform stroke (brush tip) jittering.
JitterConnectedOn bool true Perform connected jittering.
JitterRangeValue int - [1, n] 1 Max. jittering distance (randomized).
JitterLoopValue int - [1, n] 1 Number of jitterings per step.
Note: to do.

33

7 spEngine structures and constants

7.2.5 Polygon filling parameters

7.3 Brush specific parameters

‘ Parameter ‘ Type-Domain ‘ Def. ‘ Description
PolyFillOver bool false Polygon is filled over stroke borders.
PolyExcludeFilters bool true Do not apply brush filters on polygon
interior.
PolyExcludeBump bool false | Do not apply bumping on polygon interior.
PolyColorIndex int - [0, 1] 0 Polygon filling color scheme. Currently
supported: 0 - single color(0), 1 - texture
PolyOverrideCapacityOn | bool false Override current brush capacity/opacity.
PolyCapacity Value int - [0, 100] 100 Capacity /opacity percentage (if override is
true).

PolyBlurOn bool false Apply blur filter on polygon interior.
PolyBlurValue int - [1, n] 1 Blur radius.
PolyShrinkOn bool false Shrink polygon interior.

PolyShrinkValue int - [1, n] 1 Shrinking percentage (uses current brush
size as reference). Currently not
implemented.
Note: to do.
7.2.6 Strokes scratching
’ Parameter ‘ Type-Domain ‘ Def. ‘ Description
ScratchType int - [0, 3] 0 Scratch type. For each type there is
associated constant defined in spGlobals
unit:
px_SCRATCH NONE =0
px_SCRATCH_CIRCLE =1
px_SCRATCH SQUARE =1
px_SCRATCH_SHORT LINE = 2
px_SCRATCH LONG_ LINE =3
ScratchThicknessValue | int - [1,] 1 Scratch thickness.
ScratchNumberValue int - [1, 100] 10 Number of scrathes per 100x100 pixels.
Note: to do.

This section describes specific brush parameters, i.e. parameters related exclusively to

selected brush type...to do...

34

8 Acknowledgments

Many thanks to Bill Miller from Adirondack Software & Graphics for testing,
suggestions and Delphi demo with standard VCLs.

35

	Introduction
	Installation
	Library format
	Concept
	Version history

	Initialization and surface container
	Initialization
	Surface container

	Shapes, brushes and rendering types
	Shapes
	Brushes
	Rendering types
	Prepare everything for drawing

	Colors, textures and color scheme
	Standard colors
	Palette
	Textures
	Background tiles
	Color scheme
	Shadow color

	Drawing
	Free hand
	Other shapes
	Drawing shapes programmatically

	Advanced drawing
	Stroke envelope
	Clone brush
	Output color scaling
	Pixels arithmetics

	spEngine structures and constants
	Tpx_RenderData
	Tpx_RenderParams
	Tpx_DrawParams
	Tpx_ShadowParams

	Tpx_BrushCommonParams
	Brush tip parameters
	Brush filter parameters
	Brush bumping parameters
	Brush envelope parameters
	Brush tip jittering
	Polygon filling parameters
	Strokes scratching

	Brush specific parameters

	Acknowledgments

