
1

Energy Based Entity Automata
Siniša Petrić

SigmaPi Design 2014, Revision 1.
www.sigmapi-design.com

Abstract—A new type of automata with complex internal struc-
ture used to present virtual entities in discrete, grid-based virtual
Eco-system. Each automaton may change behavior depending
on current environment condition. Furthermore, various entity
types can be mixed in single grid-based environment in order to
observe automata behavior in relatively complex systems. Each
automaton is hierarchical structure, consisting of basic building
blocks, called organs. Organs can be grouped in organ containers,
which are finally grouped in automaton entity.

Index Terms—cellular, automata, energy, environment, Eco-
system, automaton, entity, bacteria, object.

I. INTRODUCTION

VARIOUS automata systems are well known in
mathematics, as well in computer science. From

automata covering computational theory, to discrete grid-
based automata, such as cellular automata [1] and automata
used to model behavior of non-linear systems (coupled map
lattice [2]). More or less, all automata are driven by externally
defined rules. What does it mean? Well, speaking in terms
of cellular automata, each cell depends on it’s neighboring
cell. New state of observed cell is (generally) defined as
a function (rule) of current cell state and current state of
it’s neighboring cells. Despite this simplicity (at least by
definition), cellular automata can be used to model very
complex systems, however, each cell is still “stupid”, i.e.
it’s state depends only on one rule. There is no internal cell
complexity whatsoever. Cell is just a point inside the grid.
Everything else (the rule) is somewhere outside.

In this article, I will try to build more complex cell
structure in order to allow the cell to take some responsibility
of it’s behavior. Yes, some part of rule will still be outside
the cell, but some part will be passed to the cell. Entity
automaton state is change in integer time (stepwise), just like
with ordinary cellular automaton.

Now, instead of term cell, I will use the term entity to
give some “individuality” to our poor and brainless point
inside the grid. Although this automata concept doesn’t have
intention to mimic living beings, some parallels with living
organism ares necessary for better understanding.

Every living creature (and not only them) for their existence
needs energy. Every living creature has some kind of organs
(reproductive, organs for consuming food, etc.). Even single
cell organism have organs, no matter if they are on molecular
level. Also, every living organism has some kind of processor
charged for processing information inside organs as well with

the rest of organism.
Energy, organs and processor (process) are three main
components of living organisms (at least in my perception)
and with little abstraction it can be “ported” to objects in
virtual world of automata. So, why not call that system
organism automata? Well, term entity seemed more suitable
for this level of abstraction. Organism sounds too much close
to living beings and entity automata can be used for modeling
something else, not only for emulating bacterial behavior or
even more complex organisms.

And why energy based? Between those three main
components: energy, organs and processor I vote for
energy as the most important and something that’s common
to all things in the world. Again, I will draw a parallel
with living organisms. Various organisms may have different
organs and different processing structure, but energy is
common to all of them. Let’s take Escherichia Coli bacteria,
for example.

Figure 1. E. Coli

E. Coli belongs to a group of bacteria having specific organ
called flagellum, an organ in charge for moving and rotating
bacteria when searching for food[3]. Movement needs energy
and bacteria doesn’t have infinite amount of energy. Every
movement of flagellum takes some amount of energy. Another
organ of interests is chemotaxis sensor, charged for food
detection. It also draws energy from bacteria. If bacteria does
not find food it will die. It may go to some kind of hibernation
(idle) state when energy buffer reaches “alarm” level, but
hibernation state is consuming energy as well (although much
less then in active state). So, when energy buffer reaches
some energy threshold, it dies..as all living creatures, and
decay process begins. When energy level reaches 0 value,
organism does not exist any more.

http://www.sigmapi-design.com

2

Other bacterias do not have same organs as E. Coli,
but energy buffer concept is the same. No energy, no living.

So this is the main reason for automata name: Energy
Based Entity Automata, or EBEA. Furthermore, acronym
EBEA (or ebea) will be frequently used in this article.

II. DEFINITIONS

FORMALIZATION of automata concept may be frustrat-
ing (and boring) but necessary. I will try to give simple

and consistent definition (as much as possible) without going
too deep in formalization. We will first start with organ
definition. Organ is defined as a tuple consisting of three
elements. Yes, they are: energy, organ and processor (process),
but defining organ in such way would yield to self-referencing
and because organ is some kind of basic, atomic structure,
instead of organ we will use terminal element. It can be NULL
(in terms of computer programming), it can be empty set (in
terms of set algebra), or simply terminal symbol (in terms
of formal language theory). We could also define terminal
organ, prior to defining (normal) organ, but I leave that to
mathematical purist. So, here is something that look like
serious mathematics:

ω = (E, T, P); T = ∅ (1)

where ωis an organ, our basic building block. Each organ has
it’s own energy system, denoted as E, a terminal element T and
it’s process P (we could use ωtinstead of letter T to be more
consistent with the next definitions, but T will hold the water).
If this organ present some kind of moving organ (flagellum)
it uses energy from organ related energy system (buffer) and
process P actually moves complete entity somewhere. Simple,
isn’t it? However, some organs have one or more common
attributes, like sensors or movers (motor organs). Such organs,
beside it’s own energy buffer, may share common energy
buffer and have common process as well. Those organs may
be grouped together and we came to another definition, organ
container:

Ω = (E, Ωi|ωj , P) (2)

Now what the hack is that? Organ container Ω may contain an-
other organ container(s) as well as basic organ(s). Lets assume
we have an organ container consisting of three basic organs
and another organs container (sub container) . Expanding
previous formula, we will get:

Ω = (E, (E,ω1, P), (E,ω2, P), (3)
(E,ω3, P), (E,Ω1, P), P)

If organ container Ω1contains two basic organs, we finally get
something like this:

Ω = (E, (E,ω1, P), (E,ω2, P), (4)
(E,ω3, P), (E, (E,ω4, P),

(E,ω5, P), P), P)

Of course, values for E and P in tuples are not equal, they
just represents energy and process system. To distinguish those
values, we can add some indices to them, and also rearrange
indices of omegas:

Ω = (E0, (E01, ω01, P01), (E02, ω02, P02), (5)
(E03, ω03, P03), (E1, (E11, ω11, P11),

(E12, ω12, P12), P1), P0)

which now look more consistent, but still cumbersome. As you
may notice, above organ container has it’s own energy system
and process system (processor) that are higher in hierarchy
then same elements in basic organs. This can come handy
if you want to create more complex entities. Organ container
process P can be used to make decision which organ(s) will be
active and when, depending on environmental situation. Also,
two or more organ container can be grouped in new, higher
organ container and so on and on...until we reach the master,
i.e. entity:

Ωentity = (E, Ωi|ωj , P) (6)

Entity is actually top-level, supreme organ container, with it’s
own energy system and process, used to distribute information
to and from low-level organ container and organs. To distinct
entity Ωentityfrom it’s “subdued” organ container we will
use another letter...let’s say Ψ. Entity can be represented as
general tree, which is more convenient then expanding tuples,
as we did in expression (5). Here is an example:

Ψ

ω02ω01Ω2

Ω3

ω32ω31

ω21

Ω1

ω12ω11

Now, this representation is obviously more readable: our
entity consists of two organ container and two basic organs.
Furthermore, organ container Ω1 consists of two basic
organs and Ω2consists of one basic organ and one sub
container, which again consists of two basic organs. From
this representation, one constraint regarding process P, arise
as natural:

Communication signal (as part of process P), can be sent
from some organ (node), only to parent node (entity or organ
container). Signal received by some organ is always sent from
parent node.

Why? A simple reason: with this constraint, we will avoid
communication paths to form cyclic graphs. We have a nice
acyclic, tree structure...why to complicate things to much. We
can formalize this statement, but I think it is not necessary

3

at this moment. Energy flow inside entity also obeys the
same rule. Energy can be sent or received in the same way as
communication signal. What’s left? Well, we need to expand
terms like energy system and process. Energy system E of
some entity element, let’s say an organ, consists of maximum
energy level (energy buffer size), current energy level, energy
consumption per time step, alarm value and...some other stuff
that comes to your mind, which are related to energy. For
now, let’s keep it simple:

E = (Be, e, δe, ξe, Ae, De) (7)

where Beis energy buffer size (maximum level), e is the
current energy level, δe is energy consumption per time step
when organ is in active state, ξe is energy consumption in
hibernated (idle) state and Aeis alarm value. Alarm value is
minimum acceptable energy level, When current energy level
reaches alarm value, organ (or organ container) may send a
signal to higher organ container (entity) to notify it of current
crisis. Entity can either send energy from reserves (or borrow
it from other organs) or trigger organ (organ container) to go
to hibernate state. If nothing is possible, energy consumption
goes on and on until entity dies. Entity dies when value
of idle state threshold De is reached. Entity sill has some
energy, but it’s actually dead. It can be only used as a food
for scavenger entities. Energy consumption continues, but
entity is in decay stage. When energy level 0 is reached,
entity does not exists any more. Entity overall current energy
level can be expressed as a sum of all energy levels of it’s
constituting elements:

e(Ψ) =

n(Ψ)∑
i=1

ei (8)

where n(Ψ) is number of nodes in entity, including the root
node, and ei is current energy value of each node. This
value becomes important when one entity is actually food for
another entity. When eating process is finished, it represents
the amount of consumed energy. And finally...process
(processor). Process consists of communication system and
organ related action:

P = (Cs, α) (9)

Communication system is always bi-directional (duplex) and
organ related action is for example: move complete entity
to another point (if organ is mover), or eat the food (if
organ is eater), or scan environment (if organ is sensor), etc,
etc...which leads us to organ types.

III. ORGAN TYPES

ORGANS can be defined (and programmed) according
to our needs, however few specialized types impose

themselves as natural:

1) Mover: an organ charged for moving complete entity
from some point A to some point B.

2) Eater: an organ charged for consuming food and con-
verting it to energy. After food is converted to energy,
Eater organ’s process, sends signal to upper level to take
and distribute energy across the system.

3) Reproductor: a reproductive organ. It’s main task is to
produce another entity of the sane kind.

4) Sensor: sensing organ. Scans environment searching
either for food, or for friends and foes. Sensor organ’s
process, generally keeps a list of food (possibly in
preferred order) and mandatory, a list of friends and foes.

Do wee need more then one specialized organ (let’s say
mover) per organ container/entity? This is quite an interesting
question. Drawing a parallel with caterpillar we may construct
a bunch of same mover organs (legs) and group them in some
organ container. But, how we shell handle them in program
implementation? Will our entity move faster with so many
legs? Well, we can do that, but it would complicate our task.
We can say: OK, entity with more then one mover organ can
traverse bigger distance per one step and more mover organs,
bigger the distance. Nice, but now what about cheetah?
Cheetah has only four legs, much less then caterpillar, but
moves much faster. So, this problem is not easy to solve,and
for sake of simplicity, in this paper (implementation), only
one specialized organ per organ container/entity will be used.

Now, what about organs order of creation? Entity, depending
on environmental situation, must decide if it will move,
scan the environment or reproduce. Organs creation order,
tells entity which organ’s process has precedence. If we
have created entity with three organs in the following order:
mover, reproductor and eater, entity will first try to move,
then will try to reproduce and after that will try to eat. Of
course, we can add some value to each organ, indicating
precedence probability, but I leave that for next version of
EBEA implementation.

IV. OBSERVER

SO FAR we were playing with definitions and descriptions
of entity structure and, as proposed in introduction,

we have “passed” a part of automata rules to entities via
processes P. Entity processes dictate entity behavior inside
environment. However, at this moment we can not pass
complete responsibility to entities. So, we came to observer’s
point of view. Observer, or more precisely environment
designer is responsible for creating initial environment (grid
size, entities seeding) and of course, imposing some rules
that can not be handled by entities themselves.

As previously stated, cellular automata (CA) works by
changing state of observed cell X, depending on it’s current

4

state and state of surrounding (neighboring) cells (according
to some rule). New state of the cell X is not taken into
account when this cell becomes neighboring cell of newly
observing cell Y. New cells state is transferred to new
“environment”, when complete grid is scanned and all cells
states evaluated. Similar to applying some convolution filter
to image. I like to say that CA is static-evolving system. From
cells viewpoint, it’s static and from observer’s viewpoint,
system is perpetually evolving, i.e. system is dynamic.

EBEA works quite different and is somewhere between
CA and particle system [4], especially when entity movement
(or reproduction) occurs. When entity X is observed, it’s new
state immediately influences the state of entity Y. Note: in
some of my previous papers, I have treated CA in exactly the
same way...which is not the way CA operates. However, I
can always use term quasi-CA, or non-strict-CA. So, EBEA
is natural successor of “quasi-CA” and it can be viewed as
combination of CA and particle system..to some extent .
Enough apology, let’s get back to business.

Figure 2. Overlay problem

When entity moves to the free cell inside grid, it occupies
that cell and releases the previously occupied position. If we
do not “refresh” our environment with new situation, another
entity may occupy the same cell. However, in regular CAs,
the way we are scanning the grid does not effect the new
automata state in no way.

With EBEA, the things are different. We do not scan
complete grid. Entities (entity pointers) are usually stored in
some array and if we loop through array to detect new entity
position, entities with smaller array indices are privileged,
as they have precedence of moving and occupying cell. We
can avoid such biasing, using array shuffle, but still same
problems persists. Besides shuffling, we can use several
methods to get desired results:

1) We can introduce hierarchy to entities of the same
species and order array accordingly. Entity higher in
hierarchy moves first.

2) We can allow occupying the same cell by more than
one entity and then treat that situation as meta-state or
perform entities collision, like with particle system. We
can allow that two entities occupy the same cell, if one
of the entities is food to another. This, however involves

move and eat mode of operation, i.e. food consumption
is performed when entity X overlays entity Y, which is
in the food list of entity X.

3) Again, we can allow occupying the same cell by
more the one entity (“subcell precision”) and say: this
is claustrophobic, “suffocating” situation which will
trigger some entity process P to resolve it. Either by
driving away competition (another entity) in some kind
of entities battle or by decreasing entities energy level,
due to the lack of space (suffocation).

I will leave all possibilities opened for discussion and
further works in this area, as it may yield to interesting
and complex situations. Current implementation simply does
array shuffle and does not allow that single cell is occupied
by more then one entity. The same situation can occur when
entity’s reproductive organ is triggered. Also, in current
implementation, eater consumes food only from neighboring
entities. There is no “food entity overlay”...maybe in next
implementation, which will be presented in second revision
of this article.

So, what is the responsibility of observer? I use the
term observer and not designer (or creator), because every
observer affects the world he or she observes. Yes, it happens
on quantum level, but I like to use this concept everywhere I
can. So I used it on EBEA:

1) Observer creates a 2D space (grid) of some particular
size.

2) Designs and creates entities and seeds them in space.
3) Keeps track of every entity position (x, y) inside the

grid.
4) Resolves conflicts inside the grid (multiple entity in

single cell)
5) Presents visually every step in environmental change.

And that’s it...more or less. In next section I will give a brief
(very brief) explanation of implementation, which is still in
rudimentary phase, but some ideas are behind EBEA can be
well visualized.

V. IMPLEMENTATION

IMPLEMENTATIONof EBEA is done in C++, but
it can be implemented in any other Object Oriented

Programming (OOP) language. OOP is natural choice
because implementation starts with class called base organ.
All organs are derived from this base class; eater, mover,
reproductor, base organ container and entity. The idea is to be
able to dynamically create various entities with various organs,
energy systems and processes. For now, implementation is in
rudimentary phase and I have experimented only with simple
entities, consisting only of simple organs (without organ
container).
Also, I have created some predefined, specialized entities
consisting only of one, base organ: mana and obstacle:

5

• Mana is entity consisting of only one organ, base organ.
It does not move and is always in idle state, with very
low energy consumption. Mana is general food and it can
be used to emulate agar-agar.

• Obstacle is also base organ entity. I does not move, it’s
not a food and it does not consume energy. It stay in one
place forever.

Here is an example of environment situation with one entity
type, consisting of two organs: mover and reproductor. Re-
productor is simple asexual reproductive organ that works on
binary fission bases. It splits entity in two. One entity stays in
place, while other is dislocated in randomly chosen free cell.
Here is a code snippet used to create entity with two organs:

/ / c r e a t e e n t i t y
e n t i t y = new e n t i t y O r g a n (1 0 0 0 . 0 , 1 0 0 0 . 0 , 1 0 . 0 , 1 . 1 , 0 . 1 ,

ORGAN_CONTAINER, e n t i t y _ i d , 2 , i P o s) ;
/ / add mover o rgan
e n t C o n t r o l −>addOrgan (e n t i t y , 1 0 0 0 . 0 , 1 0 0 0 . 0 , 1 0 . 0 ,

0 . 0 1 , 0 . 1 ,ORGAN_MOVER) ;
/ / add r e p r o d u c t i o n organ
e n t C o n t r o l −>addOrgan (e n t i t y , 1 0 0 0 . 0 , 1 0 0 0 . 0 , 1 0 0 . 0 ,

0 . 1 , 1 0 . 0 ,ORGAN_REPRO) ;

First line creates new entity type. Second line adds mover
organ and third one adds reproductive organ. As previously
stated: int this implementation version, organs adding order
is important and actually tells entity that moving is more
significant then reproduction (at least in this example).
Floating point values describe energy system: buffer size,
initial energy value, active state energy consumption, idle
state threshold and idle state consumption.

As you may notice, alarm value is not implemented
and because there is no mana in environment, entities will
only move and reproduce, but will die fast...in less then 1000
iterations.

White pixels represent live entities, red pixels1 represents
dead entities, while green pixels are entities traces (in process
of moving and reproducing). Intensity of green pixels falls-off
with each iteration. Each image in this example is actually
environment snapshot took every 100 iterations.

VI. CONCLUSION

ENERGY based entity automata concept is still in its
infancy and lot of work has to be done in order to

cover some “real-world” problems. Current implementation
allows only playing with few entities and mouse-driven seed-
ing method (spray). My first intention with EBEA was to
produce fancy brush strokes for artistic purposes, but idea
evolved a bit by time. With little more efforts, current EBEA
implementation can be used to simulate bacterial movement
and reproduction on agar plate, and that is the situation where
mana enters the playground. Beside implementation, a lot of
work must be done on theoretical part of EBEA. For instance,

1Unfortunately, images were saved as lossy JPEGs and red pixels are not
visible.

Figure 3. Seeding entities

Figure 4. Snapshot 1 - 100 iterations

EBEA can be described with formal language production
rules. Something like this:

S → (E, A, P)

A→ (E, A|T, P) |A, A

T → ε

where E, A, P are elements of respective subsets of ebea
alphabet, and so on. Production rules are defined ad hoc, and
they do not look so good from formal language point of view,
but again, they will hold the water. That’s all folks...until new
implementation (program) version (with new examples and
fancy images) and of course, article revision number 2.

6

Figure 5. Snapshot 2 - 200 iterations

Figure 6. Snapshot 3 - 300 iterations

REFERENCES

[1] E.F.Codd. Cellular automata. Academic Press, 1968.
[2] K. Kanenko (Ed.). Theory and applications of coupled map lattices. Wiley,

New York, 1993.
[3] Richard M Berry. Bacterial flagella: Flagellar motor. The Randall

Institute, King’s College London, London, UK.
[4] William T. Reeves. Paricle systems - a technique for modeling a class of

fuzzy objects. Computer Graphics, 17, 1983.

Figure 7. Snapshot 4 - 400 iterations

Figure 8. Snapshot 5 - 500 iterations

7

Figure 9. Snapshot 6 - 600 iterations

Figure 10. Snapshot 7 - 700 iterations

Figure 11. Snapshot 8 - 800 iterations

	Introduction
	Definitions
	Organ types
	Observer
	Implementation
	Conclusion
	References

