Coupled Map Lattice Brush

Sinisa Petrié¢

SigmaPi Design 2015, Revision 1.
www.sigmapi-design.com

Abstract—This paper describes interactive digital painting
technique where brush stroke is controlled via coupled map
lattice model. Coupled map lattice model is an extension of
cellular automata model where discrete (integer) state values of
CA cells are replaced with continuous real values. Using this
technique, various brush styles and strokes can be achieved.

Index Terms—non-photo realistic, rendering, painterly, cellu-
lar, coupled, map, lattice, brush, stroke, non-linear, dynamical,
system, artistic.

I. INTRODUCTION

OUPLED map lattice model was proposed by Kanenko

[1]], as general model for the complex high-dimensional
dynamics, such as biological systems, networks of DNA,
economic activities, neural networks, evolution, and so on. In
the field of computer graphics, CML is successfully used for
image colorization/re colorization [2] and for image segmen-
tation and encryption. Strictly speaking, Coupled Map Lattice
(CML) is defined as a n-dimensional lattice where each site
evolves in time through a map (or recurrence equation) of the
form:

Sttt = F(S?) (1)

where S is continuous variable while ¢ is discrete. In the
case of digital image, we have a two dimensional lattice,
so the state of cell (pixel) at position (i, j) evolves in two steps:

1) Each cell is updated in discrete time step:

qt+1 t
Si =F(5Y) 2
2) Subsequently each cell is averaged over set of neighbors
S}:jl, so we finally get:
1 at+1 , € Gt+1
S =1-a8H + & >S5 3)

where (k, [) are indexes of neighbor states and e stands for
coupling parameter used to control relative weight of site at
i, j and it’s surrounding neighborhood .

Although the first term in CML stands for coupled,
when the second step is omitted, we are actually speaking
of uncoupled map. Roughly speaking, CML model stands
for both cases, although without coupling, only difference
between CML and CA is continuous (real) vs. discrete
(integer) state value.

we will examine both cases

In this article, (coupled

and uncoupled) in order to get a wider palette of artistic
brushes.

II. PROCESS OVERVIEW

RUSH stroke rendering process starts with seeding
Bpoints over input one channel floating point image
by simply changing pixel value along the stroke’s path.
Seed points spacing is determined by some step variable,
i.e. distance between each subsequent seeding point. After
seeding process, we perform iterations over the stroke area,
which is determined by stroke length and brush tip size. For
each pixel inside our stroke, a new pixel state is calculated
using some function as described in step 1. from previous
paragraph. So what function to choose? I have decided to use
CA logic and again the new pixel state ¢+ is calculated from
previous pixel state ¢ depending on neighborhood situation
and given rule.

At this point, we introduce three possible rules and
each one depends on current pixel value: creation, destruction
and grow rules. Each rule examines the state of pixel’s
neighborhood and if the rule is satisfied, pixel value (state) is
changed:

1) If current pixel value is O, new pixel state (value) is
determined by creation rule. If creation rule is satisfied,
new pixel value is calculated, otherwise pixel value stays
the same (0). New pixel value may be calculated from
it’s neighborhood or by changing pixel value to some
given starting value.

2) If current pixel value is equal to some maximum in-
tensity value (given as parameter fMaxValue) or decay
flag is true, a destruction (or decay) rule is examined.
If rule is satisfied, a new pixel value can be calculated
from it’s neighborhood or changed (lowered) by some
decay factor (St+1 = (1 — edeca¥)St). After the value
is changed, a decay flag for this pixel at position (i, j)
is set to true. When new pixel state reaches minimum
intensity (given as parameter), destruction process is
stopped.

3) If current pixel value greater then O and less then some
maximum intensity (given as parameter) and decay flag
is false, a new pixel value can be calculated from it’s
neighborhood or simply changed using some constant
grow factor (S'Tt = (1 + €97°w)S?). If the new pixel
value is greater then maximum value, pixel value is set
to maximum value.

http://www.sigmapi-design.com

If we closer examine previous steps, we can see that there is
actually no grow rule at all. Pixels growth occurs when first
two rules are not satisfied. If we introduce some kind of grow
rule, we may enter the situation where nothing happens, i.e.
no rules are satisfied and nothing is drawn at all. Also, we
can allow pixels regrow when pixel value reaches minimum
value (as described in step 2.) by simply setting decay flag
back to false.

Of course, everything needs to be drawn somewhere
So, how many images we need? First of all, we need one
8-bit grayscale image (mask) where our brush stroke is
drawn. We also need two single channel floating point
images to keep new and current pixels states (images are
swapped after each iteration), one 1-bit monochrome image
for stroke bounding and one 1-bit monochrome image for
storing decay flags. Finally, we need one 24-bit image
(canvas), where brush stroke is colorized (rendered). All
images are the same size (N x M). When we speak about
images, we speak about two dimensional arrays of size N x M.

If coupling is involved, we need another (intermediate)
floating point single channel image, to store S**!, prior to
calculating S®*'as given by equation (3). Also, our state
values are normalized, i.e. S € [0, 1].

III. INSIDE THE RULES

ULES used for creation and destruction process are
specified as 3x3 matrix with “n-ary” Boolean operators
as elements. Matrix mid point is irrelevant as it presents
current pixel at position i, j. I wrote “n-ary” Boolean operators
in quotes, because they are not true n-ary Boolean operators.

As you may know, in Boolean algebra, besides well-
known binary operators, there are also operators of higher
order. The number of n-nary operators is 22", so there are 4
unary operators, 8 binary operators, etc. Those familiar with
programming languages may know that most programming
languages use one unary operator: NOT, mostly three or four
binary operators: AND, OR, XOR, NAND and one trinary
operator: IF THEN ELSE (from the set of 256). Also, in
logic, a two more binary operators are used: => (implication)
and <= (explication).

Operators such as OR, AND and NAND can be applied to
multiple operands in old-fashioned binary way, as result of A
or B or C or D is the same as (((A or B) or C) or D). The
same stands for AND and NAND operators. Now, here we
need operator that would satisfy this condition:

Expression A & B & C @& D is true if only one of the
operands is true, otherwise is false.

It looks like binary XOR, but it’s not. I will use the
name XOR for this operator, but keep in mind that it’s not
binary XOR operator. Above expression can be evaluated
using function that would count elements that are true and

if count is exactly 1 function would return true, otherwise
false. However, to be able to evaluate complete matrix in one
routine, above method is slightly changed. Finally, our rule
matrix elements take value from set of operators {OR, AND,
NAND and “XOR”}. So, the rule matrix can look something
like this:

OR | OR | OR XOR | XOR | XOR
OR OR pr| XOR XOR
OR | OR | OR XOR | XOR | XOR

or a mixture of various operators:

NAND | OR | XOR
OR OR
XOR | OR | NAND

Each operator corresponds to respective neighbor pixel. To
get Boolean value from floating point pixel value at position
k I, we will use simple inequality: S., > fTolerance.
Constant fTolerance is usually set to some small floating
value, like 0.0001, so if condition is satisfied we’ll get a true
value, otherwise false. Int he first example, all those values
will be OR-ed. Second matrix example, uses our famous
“XOR” and result will be true only if exactly one element in
the neighborhood is true, otherwise false. The third matrix
is a mixture of various operators. To avoid unnecessary and
expensive ifs, we will use an array of structure (C++):

struct structCmlLogic {
BYTE Container[8];
bool Result;
int Count;

b

Logical operator are mapped to respective array indexes: {OR,
AND, XOR, NAND} —{0, 1, 2, 3}. So, logic[0] represents
OR, logic[1] AND, and so on. Initially, far all array elements,
Container[0] is set to 0x01. Neighbor pixels are examined
in a left-right/up-down order, so that two-dimensional &,
[indexes are mapped to one-dimensional array. For each
neighboring pixel, we cast inequality Si, > fTolerance to
a Boolean variable. If this variable is true, we set respective
Container element to 0x01, otherwise to 0x00:

void addLogicContainer(structCmlLogic *logic, int index, bool v1)

{ logic[index].Container[logic[index].Count++] = v1 ? 0x01 : 0x00; }

After neighborhood is examined, we perform final rule
calculation:

bool calculateLogicContainer(structCmlLogic *logic)
{
int i;
// OR
for (i = 1; i < logic[0].Count; i++)
logic[0].Container[0] = logic[0].Container[0] | logic[0].Container[i];
logic[0].Result = (bool)logic[0].Container[0];
/I AND
for (i = 1; i < logic[1].Count; i++)
logic[1].Container[0] = logic[1].Container[0] & logic[1].Container][i];
logic[1].Result = (bool)logic[1].Container[0];
// XOR
for (i = 1; i < logic[2].Count; i++)
logic[2].Container[0] = logic[2].Container[0] + logic[2].Container[i];
logic[2].Result = (bool)(logic[2].Container[0] & 0x01);
// NAND
for (i = 1; i < logic[3].Count; i++)
logic[3].Container[0] = logic[3].Container[0] + logic[3].Container[i];
logic[3].Container[0] = (logic[3].Container[0] >> 1);
logic[3].Result = !(bool)logic[3].Container[0];
// Result
return logic[0].Result && logic[1].Result && logic[2].Result && logic[3].Result;

}

When the rule is satisfied, we will change pixel value
at position i, j by some function. If the rule is creation, we
simply set pixel value to constant seed value fSeedValue. If
the rule is destruction we can decrease pixel value by some
amount. Otherwise, we have growing process and pixel value
is increased by some amount. For example:

1) If creation rule Cr is satisfied: 5:?1 = fSeed
2) If destruction rule Dr is satisfied:
at+1 deca t
Siy = (L —efeem)si,
3) Else, growing is performed: S} ! = (14 ¢7°")S! |

We have used linear value transformation, but we can apply
any kind of function to get desired result. So, our recurrence
mapping (2) would look something like this:

Si;=0ACr=true = fSeed
Si; > 0ADr* =true = (1 — ed““y)Sf’j

St =
i, !
Sl{j > 0 A Dr* = false = (1 + Egrow)S;g,j

Where symbol Dr*denotes destruction rule in combination
with decay flag d; ;. If decay flag is false, Dr*is always false,
otherwise Dr rule is applied. Now, we can finally write down
an algorithm(s) for our stroke.

IV. STROKE DRAWING

LGORITHM for stroke drawing is quite straight forward.

We will first examine an algorithm for uncoupled map
lattice and with few changes we’ll get an algorithm for
coupled map lattice.

Before we start our process, we must set all values to
zero, for all images except 24-bit output image used for
stroke rendering. After initialization, we draw seeding points

along the stroke’s path. For each iteration we process our
CML. After iteration counter reaches maximum value, we
perform stroke rendering:

Main routine:

1) Set all values to zero (all images except 24-bit output
image).

2) Seed stepwise points following stroke’s path with
value fSeedValue in flnput image.

3) Process CML.

4) Swap fInputlmage and fOuputlmage.

5) Repeat step 3. until maximum number of iterations
is reached.

6) Render stroke onto canvas.

Now, we will go into detail regarding step 3. In case
of uncoupled lattice, we simply call processUncoupled
method which accepts two parameters, a pointer to output
image and Boolean variable that specifies shell we put pixels
in brush/stroke mask or not.

processUncoupled(paramOutput, paramDrawMask):
1) Loop through stroke bounding rectangle and fetch
value S; jfrom fInput image.
2) If S; ; > 0 examine decay flag and check destruction
rule:
a) If §; ; = true A Dr = true =
Si’j = (1 — Gd()‘CGy)Sij.
i) If 5” < fMinValue =.
S;; = fMinValue
ii) Put a new value into paramQutput image.
b) If §;; = false, proceed to next step.
¢) Perform pixel growing: S; ; = (1+ €7°%)S! ..
d) If 3” > fMaxValue =
Si’j = fMaxValue. Set decay flag to true:
0;,5 = true.
e) Put a new value into paramOuput image.
3) If S; ; =0, apply creation rule:
a) If COr = true = S, j = fSeedValue.
b) E]SG, S’i,j = Si’j.
c) Put a new value into paramQOutput image.

4) If paramDrawMask = true multiply new pixel
value by 255 and put it into brush/stroke mask (8-bit
grayscale image).

5) End loop when ¢, 5 reach the end of bounding rect-
angle.

So, instead of step 3.in main routine, we simply put a
call to our “uncoupled” method: processUncoupled(fOutput,

true);
In case of coupled lattice, we will first call
“uncoupled” method, but with different parameters:

processUncoupled(fIntermediate, false); and then we will
execute following steps:

processCoupled()

1) Loop through stroke bounding rectangle and fetch
value S; ;jfrom flntermediate image.

2) Perform coupling:
SEH = (1— S 4 & Y 8t

3) Put the new value into fOutput image.

4) Multiply new pixel value by 255 and put it into
brush/stroke mask (8-bit grayscale image).

5) End loop when ¢, 5 reach the end of bounding rect-
angle.

So, for coupled lattice, step 3. in main routine is replaced by
these steps:

o processUncoupled(fIntermediate, false);
o processCoupled();

Mate.

V. MODIFICATIONS AND IMPLEMENTATION

OME modifications to our algorithm can give quite a

boost to artistic effects that we can achieve using this
technique. First of all, we can introduce some randomness in
our model. We will do so by adding probability parameters
regarding creation, destruction and growth rule. Each
parameter specifies the probability of executing it’s respective
rule. Also, We can let user to select function (2): linear,
quadratic, etc. Rule matrix can be modified as well: elements
can be rotated (counter clockwise) or shuffled.

Implementation is done in Pixopedia 2014 from version
0.4.1. and up: By selecting “CML brush” following
parameters appear:

CML brush parameters

Parameters
Min.- Seed - Max. intensity

ol a
|||||IIIII‘_I‘IIIIIIIIIIIIII‘I_I‘
110 100 255
GfactorA Dfactor/_\.
G prob. /_\. D prob. /_\.
Cprob. /_\. Iters /_\.
D Rebarn GF= L Df= L
Coupled simple] - | Weight A
= I v

Creation rule Destruction rule

OR OR OR AND AND AND
OR Q OR AND X AND
OR OR OR AND AND AND

Matrix as is > Matrix as is >

We will briefly explain parameters meaning and conjunction
to variables from previously described algorithms:

o Min.-Seed-Max. intensity (divided by 255) correspond
to fMinValue, fSeedValue, fMaxValue respectively.

e G factor and D factor sliders correspond to
€Irow edecayrespectively.

e G prob., D prob., C prob. are probabilities for grow, de-
struction/decay and creation. Values range from [0,100].
Internally, probabilities are normalized (scaled to [0,1]).

o Iters parameter specifies number of iterations.

« Reborn (regrow) parameter specifies if decay flag will
be set back to false after minimum intensity in destruc-
tion/decay process is reached in order to allow re-growing
of pixel.

e Gf and Df are used to select recursive function (lin-
ear, quadratic, neighbor bulling and inverse neighbor)
for growing and destruction/decay respectively. Function
type is changed by clicking on appropriate sky-blue
colored rectangles.

e Combo box below Reborn check boxes is used to se-
lect uncoupled, coupled simple or coupled Nzn mode.
Uncoupled and Coupled simple modes are the same as
described in previous sections and Coupled Nzn mode
slightly differs from simple coupling as it sums only
neighboring pixels that are greater then zero (NzN - non-
zero neighbors).

o Weight slider is used to set evalue in coupling equation
3).

¢ Creation and Destruction rules matrices correspond to
Cr and Dr. Operators are changed by clicking on appro-
priate sky-blue colored rectangles.

e Two combo boxes on the bottom are used to specify
matrix modification: as is, rotate and shuffle.

When all global (brush size, step, bumping, filters, etc...)
and specific (as describe above) parameters are set, simply
draw the stroke over image. Until mouse button is released,
previously described process is performed. You will notice that
stroke appearance changes depending on how fast you move
your mouse. Because of wast amount of available parameters,
lot of experimentation form the user’s side is required in
order to get acquaintance with CML brush. In the next section
we will describe few settings that give very pleasant artistic
effects.

VI. EXAMPLES AND CONCLUSION

OR the sake of simplicity, most examples presented in
this article use the same brush size set to 60. With every
figure, picture of currently used brush parameters is attached.

To conclude this article, some thoughts on future work:

o Besides using CML only for brush stroke construction
(which is actually 8-bit grayscale mask), we can also
couple (in rendering process) original image, full color
24-bit pixels value with brush color, to achieve interesting
“colorizing” effects.

o We can use some “non-blank” image and apply CML on
randomly seeded points, or use image contour as stroke

path, performing our rules and coupling methods on full
color 24-bit images.

o Use background tiles to simulate various papers/canvases
and let CML stroke interact with them.

Of course, readers feedback and implementation of any news
and achievement in the field of CA and CML is highly
recommended..

‘/7,'\
{
/

/

} Gorab. (9|2 opren. (0 _]A
/ . —
{ v &%
| Oron o= [l o B

Uncouped

Greaton e Destuctonrie

® o | a0 a0 a0

wl o [l |[mol| x [0

o o [r | a0 a0 a0

Nawwae - | Mamkasis

Figure 1. Uncoupled lattice using default CML settings with brush bumping,
blur filtering and stroke inversion.

Figure 2.
process.

Coupled lattice (simple) using reborn option without creation

REFERENCES

[1] K. Kanenko (Ed.). Theory and applications of coupled map lattices. Wiley,
New York, 1993.

[2] V. Vezhnevets V. Konushin. Interactive image colorization and recoloring
based on coupled map lattices. Graphics and Media Lab., Lomonosov
Moscow State University, Moscow, Russia, 2010.

® (o |or | w0

)
@ o [a [[a0 x
w0

I

wo (o [|[awo

Rosttemat - | | Mawxass

Figure 3.

Uncoupled lattice with altered creation matrix

o= G0
v
Breborn o=

Cougled srole

Ceaton e

®| ® ®

®| o &

®| & ®

= St matx

Figure 4. Coupled lattice with altered destruction matrix

CML brush parameters

Parameters

Min.- Seed - Max. intensity

110 168 255

e]G over G

Cprob. % Ters %

Rrebon or= [W8] or= [

| weon |4

Coupled simple

Creaton ruie Destruction ruk

| R R AD AN AND
® | o | a0 | x | AND

R R R AD AN AND

Matrix as s <1 | Matixasis

Figure 5.
autobrushing technique

Coupled lattice (simple) with brush size set to 14, using

	Introduction
	Process overview
	Inside the rules
	Stroke drawing
	Modifications and implementation
	Examples and conclusion
	References

